Tension électrique : TP cours							
NOM: Prénom: Classe:							
Objectifs : Etablir les loi dérivation.	Duré	Durée : 1 h					
Compétence évaluée			Domaine	Evaluation			
Lire et comprendre des docun	D1.3						
Concevoir une expérience por	D4						

I. Tension aux bornes des dipôles d'un circuit en série

1.	Ap	proche	théoric	ue

- Regarder la vidéo présentant la notion de tension et l'utilisation du voltmètre :
- Lire et compléter la fiche de cours distribuée.

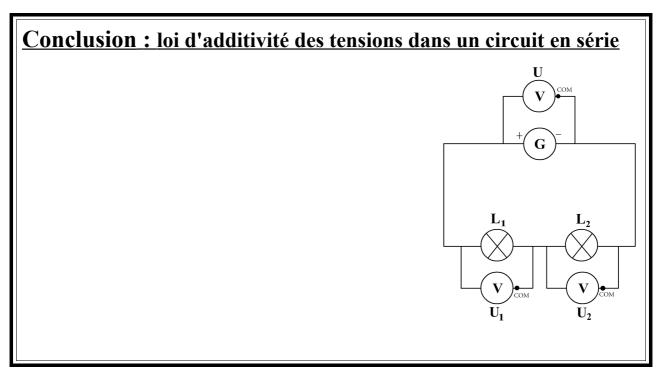
2. Approche expérimentale

Schéma du circuit

Dessiner dans le cadre ci-contre, le schéma d'un circuit comportant en série, deux lampes L_1 et L_2 , une pile, un ampèremètre et un interrupteur.

Ajouter sur ce schéma un voltmètre permettant de mesurer la tension U aux bornes de la pile. Indiquer les positions de ses bornes V et COM.

3. Réalisation pratique


- a) Réaliser le circuit schématisé précédemment.
- b) Noter la valeur de la tension U aux bornes de la pile dans le tableau de la question d).
- c) Déplacer le voltmètre de façon à mesurer la tension aux bornes d'un fil de connexion, puis aux bornes de l'interrupteur puis aux bornes de l'ampèremètre. Que constatez-vous ?

La	tension	aux	bornes	d'un	fil	de	connexion,	d'un	interrupteur	fermé	ou	d'un
	ampè	remè	tre est t	oujou	rs_							

d) Déplacer le voltmètre de façon à mesurer les tensions U_1 aux bornes de L_1 puis U_2 aux bornes de L_2 , Reporter ces valeurs dans le tableau ci-dessous :

<i>U</i> (V)	U_1 (V)	U_2 (V)

e)	Trouver la relation mathématique liant	U	,	U_1	et	U_2		

II. Tension aux bornes de dipôles placés en dérivation

1. Approche expérimentale

Schéma du circuit

Dessiner dans le cadre ci-contre, le schéma d'un circuit en dérivation comportant une pile et un interrupteur dans sa branche principale et deux $lampes \ L_1$ e t L_2 dans ses branches dérivées.

Ajouter sur ce schéma un voltmètre permettant de mesurer la tension U aux bornes de la pile. Indiquer les positions de ses bornes V et COM.

2. <u>Réalisation pratique</u>

- a) Réaliser le circuit schématisé précédemment.
- b) Noter la valeur de la tension U aux bornes de la pile dans le tableau de la question d).
- c) Déplacer le voltmètre de façon à mesurer les tensions $\ U_1$ aux bornes de $\ L_1$ puis $\ U_2$ aux bornes de $\ L_2$, Reporter ces valeurs dans le tableau ci-dessous :

<i>U</i> (V)	U_1 (V)	U_2 (V)

- d) Trouvez la relation liant $\,U\,$, $\,U_{\,1}\,$ et $\,U_{\,2}\,$.
 - 3. Conclusion : loi d'unicité des tensions dans un circuit en dérivation (à écrire sur une feuille de cours).